

XIX Congresso della Società GITMO

RIUNIONE NAZIONALE GITMO

TORINO, CENTRO CONGRESSI LINGOTTO, 5-6 MAGGIO 2025

Evoluzione della diagnosi e del trattamento del citomegalovirus

Corrado Girmenia

UOSD Pronto Soccorso e Accettazione

Ematologica, AOU, Policlinico Umberto I,

Roma

DA VITA NASCE VITA: PROMUOVERE LA DONAZIONE DI CELLULE STAMINALI EMOPOIETICHE IN ITALIA

Disclosures of Name Surname

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
GILEAD					Х		
MSD					x	X	
PFIZER					х		
BIOTEST					х		
TAKEDA					х	х	
GSK					х		
JANSSEN					x	x	
Astra Zeneca					x		

Open Forum Infectious Diseases

MAJOR ARTICLE

Infectious Diseases Society of America HIV Medicine Association

The Changing Impact of Human Cytomegalovirus Serology and Infection on Patient Outcome After Allogeneic Hematopoietic Stem Cell Transplantation: An Italian Prospective Multicenter Survey in the Era of Letermovir Prophylaxis

Corrado Girmenia,^{1,®} Patrizia Chiusolo,^{2,®} Giovanni Marsili,³ Alfonso Piciocchi,^{3,®} Maria Caterina Micò,⁴ Raffaella Greco,^{5,6,®} Gaetana Porto,^{7,®} Federica Galaverna,⁸ Francesca Bonifazi,^{9,®} Ilaria Cutini,^{10,®} Michele Malagola,¹¹ Stefania Bramanti,¹² Alessandro Busca,¹³ Angelo Michele Carella,¹⁴ Alessandra Carotti,¹⁵ Anna Paola Iori,¹ Francesco Onida,^{16,17,®} Roberto Bono,¹⁸ Elisabetta Terruzzi,¹⁹ Adriana Vacca,²⁰ Amelia Rinaldi,²¹ Irene Maria Cavattoni,²² Alessandra Picardi,^{23,24,®} Maura Faraci,^{25,®} Tiziana Lazzarotto,^{26,27,®} Fausto Baldanti,^{28,29,®} Pierangelo Clerici,³⁰ Luca Castagna,^{18,®} Massimo Martino,⁷ and Fabio Ciceri^{5,6,®}; for the Gruppo Italiano Trapianto di Midollo Osseo (GITMO) and Associazione Microbiologi Clinici Italiani (AMCLI)^a

Received 24 November 2024; editorial decision 09 April 2025; accepted 16 April 2025; published online 18 April 2025

Risk of CMV infection in allo-HSCT according to recipient and donor CMV serostatus

Risk of CMV infection	Recipient CMV serostatus	Donor CMV serostatus
+	Negative	Negative
++	Negative	Positive
+++	Positive	Positive
++++	Positive	Negative

$$\frac{R+/D- > R+/D+ > R-/D+ > R-/D-}{R-/D-}$$

Styczynski J. Infect Dis Ther. 2018;7:1-16

Michael Boeckh and W. Garrett Nichols

The impact of cytomegalovirus serostatus of donor and recipient before hematopoietic stem cell transplantation in the era of antiviral prophylaxis and preemptive therapy BLOOD, 15 MARCH 2004 · VOLUME 103, NUMBER 6

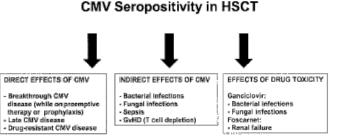
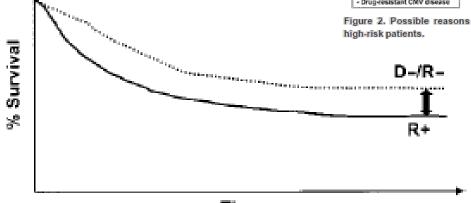



Figure 2. Possible reasons for association of CMV with poor outcome in high-risk patients.

Time

Figure 1. Schema demonstrating the impact of pretransplant CMV infection on overall survival after allogeneic HSCT. Despite the near-complete elimination of early CMV disease with current strategies, a survival disadvantage persists for high-risk, CMV-seropositive patients (R+) compared with D-/R- patients.

Early cytomegalovirus reactivation remains associated with increased transplant-related mortality in the current era: a CIBMTR analysis

Pierre Teira,^{1,*} Minoo Battiwalla,^{2,*} Muthalagu Ramanathan,^{3,*} A. John Barrett,^{2,*} Kwang Woo Ahn,^{4,5} Min Chen,⁴ Jaime S. Green,⁶ Ayman Saad,⁷ Joseph H. Antin,⁸ Bipin N. Savani,⁹ Hillard M. Lazarus,¹⁰ Matthew Seftel,¹¹ Wael Saber,⁴ David Marks,¹² Mahmoud Aljurf,¹³ Maxim Norkin,¹⁴ John R. Wingard,¹⁴ Caroline A. Lindemans,¹⁵ Michael Boeckh,¹⁶ Marcle L. Riches,¹⁷ and Jeffery J. Auletta¹⁸

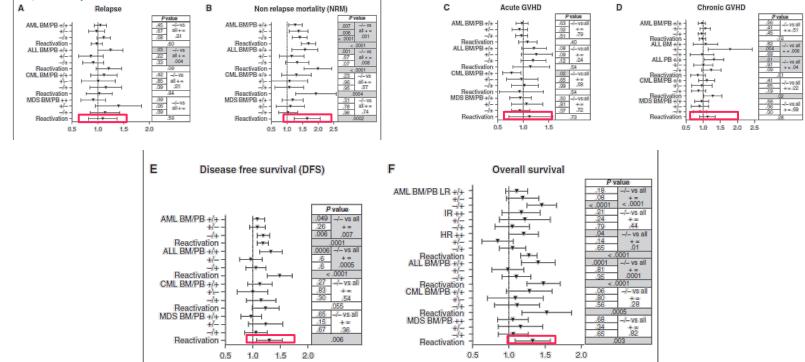
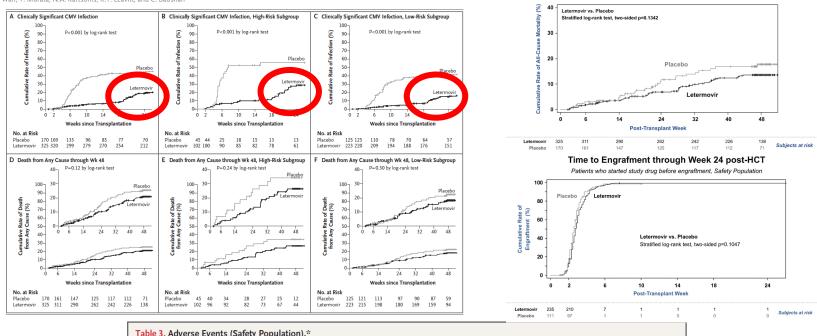


Figure 3. Multivariable analysis of risk factors for outcomes depending on CMV donor/recipient serology or CMV reactivation. (A) Relapse, (B) NRM, (C) aGVHD D) cGVHD, (E) DFS, and (F) OS. For multivariate analysis, D-/R- = 1, and no CMV reactivation = 1.

BLOOD, 19 MAY 2016 · VOLUME 127, NUMBER 20

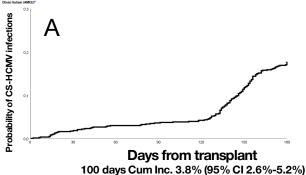

Letermovir Prophylaxis for Cytomegalovirus in Hematopoietic-Cell Transplantation

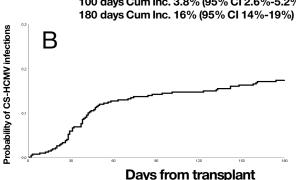
N Engl J Med 2017;377:2433-44.

Non-Relapse Mortality through Week 48

Primary Efficacy Population

F.M. Marty, P. Ljungman, R.F. Chemaly, J. Maertens, S.S. Dadwal, R.F. Duarte, S. Haider, A.J. Ullmann, Y. Katayama, J. Brown, K.M. Mullane, M. Boeckh, E.A. Blumberg, H. Einsele, D.R. Snydman, Y. Kanda, M.J. DiNubile, V.L. Teal, H. Wan, Y. Murata, N.A. Kartsonis, R.Y. Leavitt, and C. Badshah


Event	Letermovir Group (N=373)	Placebo Group (N=192)	Difference (95% Cl)	P Value
	number of patients w	vith event (percent)	percentage points	
Any adverse event	365 (97.9)	192 (100)	-2.1 (-4.2 to -0.2)	0.07


Open Forum Infectious Diseases

Infectious Diseases Society of America HIV Medicine Association

The Changing Impact of Human Cytomegalovirus Serology and Infection on Patient Outcome After Allogeneic Hematopoietic Stem Cell Transplantation: An Italian Prospective Multicenter Survey in the Era of Letermovir Prophylaxis

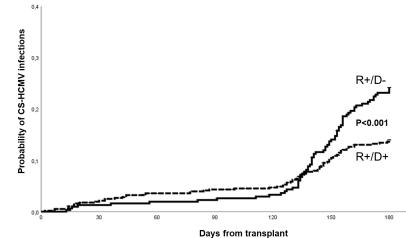
Conside Gimenia,¹⁶ Patricia Olizoota,¹⁶ Giarranii Marzili,¹ Allenos Preiscicch,¹⁶ Maria Caterina Mick,¹ Anfania Dece,¹⁴⁴ Castana Patra,¹⁶ Federica Giarrani, ¹ Tencenze Intellin¹⁴, ¹⁶ Marchan,¹⁶ Martin,¹⁶ Martin,¹⁶ Martina,¹⁶ Martina,¹⁶

100 days Cum Inc. 14% (95% Cl 11%-17%) 180 days Cum Inc. 17% (95% Cl 13%-20%)

Cumulative incidence of CS-HCMV infections in 879 allo-HSCT recipients who received letermovir prophylaxis.

Overall, a HCMV end-organ diseases was documented in 7 patients who received LET-PP at 20, 126, 127, 135,138, 152 and 162 days from transplant, respectively. They were HCMV pneumonia in 5 cases and gastrointestinal disease in 2 cases. In only one case the endorgan HCMV disease was a breakthrough infection documented during LET-PP while in the remaining 6 cases the disease occurred after LET-PP discontinuation.

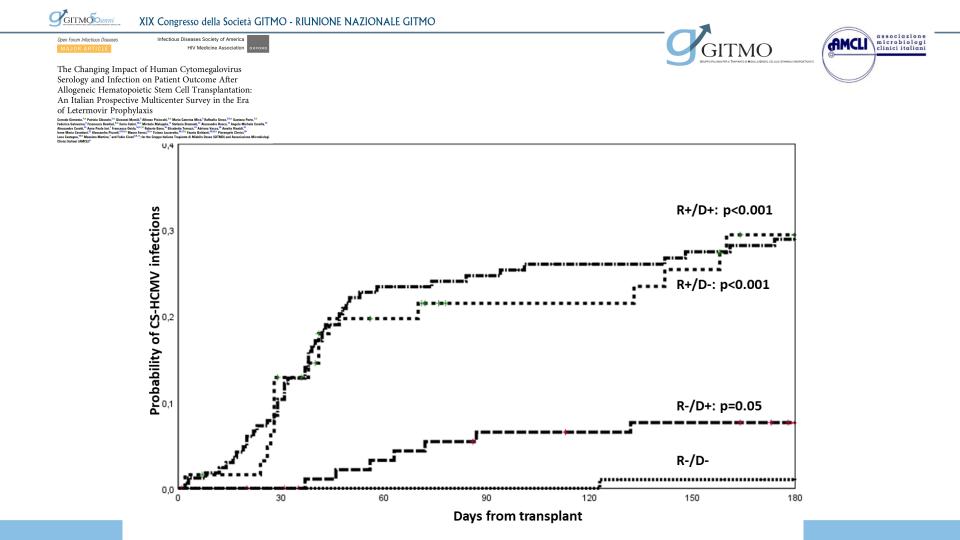
Cumulative incidence of CS-HCMV infections in 431 allo-HSCT recipients who did not receive letermovir prophylaxis.


Overall, a HCMV end-organ diseases was documented in 3 patients who did not receive LET-PP at 29, 47 and 123 days from transplant, respectively. They were HCMV pneumonia in 2 cases and gastrointestinal disease in 1 case. Open Forum Infectious Disease MAJOR ARTICLE Infectious Diseases Society of America HIV Medicine Association

The Changing Impact of Human Cytomegalovirus Serology and Infection on Patient Outcome After Allogeneic Hematopoietic Stem Cell Transplantation: An Italian Prospective Multicenter Survey in the Era of Letermovir Prophylaxis

eferica Galaxiera, "Inacional Buttini," Bina Gala, "Medicini Malayat," Solarian Barnardi, "Aseasatini Barca, "Angola Messika Carola," Medicina Galaxiera, "Inacional Messika", Barca Galaxiera, "Messika Carola, "Angola Messika Carola, "Angola Messika Carola, " en Maria Carolina", "Massino Martine," and Fakio Carola.", for the Grappa Indiana Trapiante di Mathia Ossoo (GTMO) and Associazione Microhiofogi Inisi Jahani (Martini, "Angola Messika"), for the Grappa Indiana Trapiante di Mathia Ossoo (GTMO) and Associazione Microhiofogi Inisi Jahani (Martini, "Angola Messika"), for the Grappa Indiana Trapiante di Mathia Ossoo (GTMO) and Associazione Microhiofogi

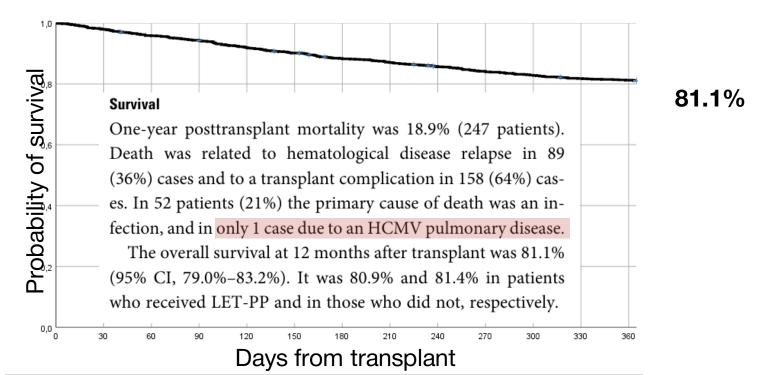
By multivariate analysis variables associated with increased risk of late CS-HCMV-i in patients receiving LET-PP were:


- a transplant from a HCMV seronegative donor (HR 2.30; 95% Cl 1.55-3.40; p<0.001),
- a transplant from a haploidentical donor (HR 3.51; 95% CI 1.70-7.25; p<0.001),
- **T cell depletion** (HR 1.86; 95% CI 1.19-2.91; p=0.006),
- > 20 days duration to obtain engraftment (HR 1.51; 95% CI 1.02-2.22; p=0.038),
- grade II-IV acute GVHD (HR 1.65; 95% CI 1.08-2.51; p=0.021),
- a clinically significant EBV DNAemia (HR 1.59; 95% CI 1.02-2.47; p=0.047)
- an invasive fungal disease (HR 2.02; 95% CI 1.05-3.89; p=0.036).

associazione

microbiolog

clinici italiani


Open Forum Infectious Diseases

Infectious Diseases Society of America HIV Medicine Association

The Changing Impact of Human Cytomegalovirus Serology and Infection on Patient Outcome After Allogeneic Hematopoietic Stem Cell Transplantation: An Italian Prospective Multicenter Survey in the Era of Letermovir Prophylaxis

Correct Gimenia, ¹⁴⁷ Patica Ghiosh, ¹⁴³ Genuil Marall, ²Maters Poiscek, ¹⁴⁷ Maris Carren Mex, ¹ Indenta Genz, ¹⁴³ Genza Pote, ¹⁴⁷ Teferica Gimenia, ¹⁴ Patica Ghiosh, ¹⁴³ Benzi Marall, ²⁴⁸ Marka Maraya, ¹⁴ Sabara Denami, ¹⁴⁷ Marando Bacu, ²⁴ Angle Michael Correll, ¹⁴⁷ Teferica Gimenia, ¹⁴⁸ Patica Ganeti, ¹⁴⁴ Benzi Marka, ¹⁴⁸ Marka Maraya, ¹⁴⁸ Marka Marall, ¹⁴⁸ Marka Marall, ¹⁴⁸ Marka Marall, ¹⁴⁸ Marka Marall, ¹⁴⁸ Marina, ¹⁴⁸ Marka Marall, ¹⁴⁸ Tennar, ¹⁴⁸ Marka, ¹⁴⁸ Marka Marall, ¹⁴⁸ Marka Marall, ¹⁴⁸ Luca Catagor, ¹⁴⁸ Marina Marina, ¹⁴⁸ Antia Cater, ¹⁴⁵, ¹⁴⁸ Ten Gange Balama, ¹⁴⁸ Marka Ganeta, ¹⁴⁸ Marka Marka, ¹⁴⁸ Luca Catagor, ¹⁴⁸ Marina Marina, ¹⁴⁸ Antia Cater, ¹⁴⁵, ¹⁴⁸ Ten Gange Balama, ¹⁴⁸ Marka Danes (ITMR) and Associatione Montholog Chini: Thiana (MARC).

Probability of survival at 12 months from transplant

Open Forum Infectious Diseases MAJOR ARTICLE Infectious Diseases Society of America HIV Medicine Association

In patients who received LET-PP factors independently associated with increased mortality rate were:

- a diagnosis of acute leukemia,
- a disease not in complete remission at the time of HSCT,
- an **ECOG** performance status >1,
- prolonged (> 20 days) pre-engraftment neutropenia,
- acute grade II-IV GVHD,
- clinically significant EBV DNAemia,
- Gram negative bacteremia,
- invasive fungal disease

In patients who did not receive LET-PP factors associated with increased mortality rate were:

- recipient HCMV seropositivity,
- high HCT comorbidity index at transplant,
- cord blood transplant
- Gram negative bacteremia

Open Forum Infectious Diseases MAJOR ARTICLE Infectious Diseases Society of America HIV Medicine Association

The Changing Impact of Human Cytomegalovirus Serology and Infection on Patient Outcome After Allogeneic Hematopoietic Stem Cell Transplantation: An Italian Prospective Multicenter Survey in the Era of Letermovir Prophylaxis

Geneda General, ¹⁴ Partica Clausel, ¹⁴ General Hernik, ¹Massa Poiseetk, ¹⁴ Maria Charina Mark, ¹Anfaria Caneca Pare, ¹⁴ Teferica General, ¹⁴ Teneral Banda, ¹⁴ Tima Cani, ¹⁴ Malche Manga, ¹ Sabata Banda, ¹⁴ Jonasab Pare, ¹⁴ Markab Bardia, ¹⁴ Hernik, ¹⁴ Charles, ¹⁴ Teneral, ¹⁴ Tima Cani, ¹⁴ Malche Manga, ¹⁴ Sabata Banda, ¹⁴ Jonasab Pare, ¹⁴ Markab Canis, ¹⁴ Teneral, ¹⁴ Marian Martini, ¹⁴ Arian General, ¹⁴ Tana Katamar, ¹⁴ Teneral Sabata, ¹⁴ Teneral, ¹⁴ Markab, ¹⁴ Teneral, ¹⁴ Tana Sabata, ¹⁴ Teneral, ¹⁴ Teneral,

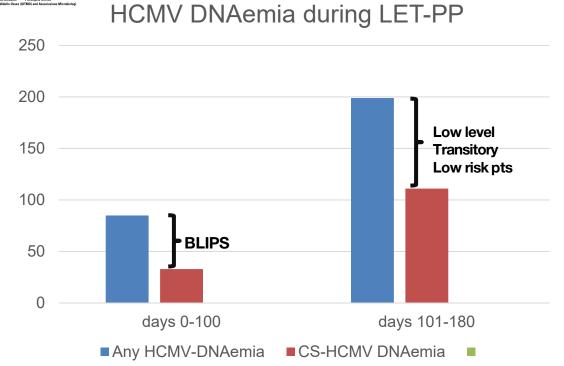
Take home messages from the CYTOALLO GITMO-AMCLI study

associazione

microbiologi

clinici italian

- Recipient/donor serology **no more impact** on HCMV infection risk and survival in patients who receive LET-PP
- Recipient serology still represent a risk of HCMV infection and poorer outcome in patients who do not receive LET-PP
- HCMV end organ disease is an uncommon complication particularly during LET-PP
- HCMV DNAemia **BLIPS** during LET-PP is a phenomenon that requies careful evaluation
- LET-PP should be extended to HCMV seropositive children
- Management of late HCMV infections is a key issue in the LET-PP era
 - ✓ Extended duration LET-PP
 - ✓ HCMV **T-cell reconstitution** monitoring
 - ✓ Use of **CMV specific IVIG** in association with antivirals
 - ✓ Effective and safe antiviral therapy to administer in an outpatient setting (oral drugs)
 - ✓ Management of **resistant-refractory infections**



Open Forum Infectious Diseases

Infectious Diseases Society of America HIV Medicine Association

The Changing Impact of Human Cytomegalovirus Serology and Infection on Patient Outcome After Allogeneic Hematopoietic Stem Cell Transplantation: An Italian Prospective Multicenter Survey in the Era of Letermovir Prophylaxis

Const Gimeski, "Parkis Chained," Banna Marial, Alkono Falcicath," Maria Careton Mex, "Indirath Green,"¹⁶ Ganton Feer, ¹⁶ Feferics Gimeski, "Generation Marial," Maria Malkanja, "Status Branay," Menando Brana," Margin Michael Const, "Anna Maria Caretta, "Anna Maria Marian, "Status Branay, "Status Branay," Anna Maria, "Status Brana," Status Brana, "Status, "Status, "Status, "Status," Status, "Status, Branay, "Anna Maria, "Status, Brana, "Anna Luca Catagos, "Mariano Martina," and Falia Caretta's for the Grayon Jakima Trajante & Madria Dares (STMD) and Annaciones Menniholy Ginici Tubai (Micro).

associazione

microbiologi clinici italiani

AMCLI

8 | Virology | New-Data Letter

Lazzarotto^{1,2}

CMV-RNAemia as new marker of active viral replication in transplant recipients

Giulia Piccirilli,¹ Federica Lanna,² Liliana Gabrielli,¹ Vincenzo Motta,² Martina Franceschiello,¹ Alessia Cantiani,² Matteo Pavoni,² Marta Leone,² Eva Caterina Borgatti,² Dino Gibertoni,³ Renato Pascale,⁴ Maddalena Giannella,⁴ Francesca Bonifazi,⁵ Tiziana A total of 254 blood samples from 47 CMV-DNAemia-positive episodes that occurred in 44 transplant recipients were retrospectively tested for the detection and quantification of CMV-RNAemia, using the CMV RNA ELITe MGB kit on ELITe InGenius instrument (ELITechGroup).

test targeting the virion-associated UL21.5 mRNA, a late transcript highly expressed during lytic infection

TABLE 1 Characteristics of study population, infective episodes, and samples analyzed

	LMV-prophylaxis	LMV off-label treatment ^b	Pre-emptive therapy ^c
No. of transplant recipients	23	7	14
No. of CMV-DNAemia-positive episodes ^d	25	7	15
CMV-DNAemia-positive/total samples	97/106	35/37	95/111
Median CMV DNAemia levels in whole blood (copies/mL ^e , range		$1.4 \times 10^3 (3 \times 10^2 - 7.3 \times 10^4)$	$2.8 \times 10^3 (3 \times 10^2 - 2.4 \times 10^6)$
No. of CMV-RNAemia-positive episodes ^f	6	6	15

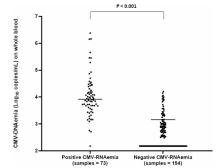
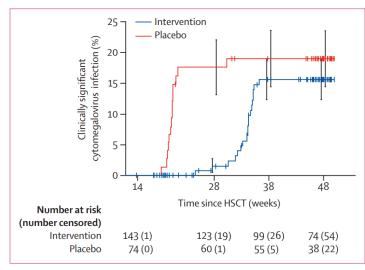



FIG1 Comparison of CMV-DNAemia levels in samples positive and negative for CMV-RNAemia. Positive values under the lower limit of quantification (300 copies/mL) were reported as equal to 150 copies/mL. Higher median CMV-DNAemia values were observed in specimers positive for CMV-RNAemia than in the negatives: 8,289 copies/mL [Interquartile range (IQR: 4,664–21,286.2] vs 373 copies/mL (IQR: 300– 1).1657), respectively? < CO001 IMAn-Whitings test).

In the 12 episodes in which CMV-RNAemia was detected during LMV administration, the active viral replication was documented by CMV-viremia and/or DNase tests. In the 20 episodes in which CMV-RNAemia was not detected during LMV administration, the active viral replication was excluded by CMVviremia and/or DNAse tests suggesting aborting infections CMV-RNAe mia was positive in all 15 episodes from 14 patients receiving pre-emptive therapy Efficacy and safety of extended duration letermovir prophylaxis in recipients of haematopoietic stem-cell transplantation at risk of cytomegalovirus infection: a multicentre, randomised, double-blind, placebocontrolled, phase 3 trial

Domenico Russo, Michael Schmitt, Sylvain Pilorge, Matthias Stelljes, Toshiro Kawakita, Valerie L Teal, Barbara Haber, Charlene Bopp, Sanjeet S Dadwal*, Cyrus Badshah*

Figure 2: Cumulative rate of clinically significant cytomegalovirus infection in the primary efficacy population

Kaplan-Meier plot for the time to onset of clinically significant cytomegalovirus infection from randomisation at week 14 to week 48 following HSCT.

CrossMark

Open Forum Infectious Diseases MAJOR ARTICLE Infectious Diseases Society of America HIV Medicine Association

The Changing Impact of Human Cytomegalovirus Serology and Infection on Patient Outcome After Allogeneic Hematopoietic Stem Cell Transplantation: An Italian Prospective Multicenter Survey in the Era of Letermovir Prophylaxis

aco Onida. 14.11.0 Roberto Bunn. 18 Elizabetta Terrazzi. 18 Adriana Vac

Lancet Haematol 2023

Published Online December 21, 2023

By multivariate analysis variables associated with increased risk of late CS-HCMV-i in patients receiving LET-PP were:

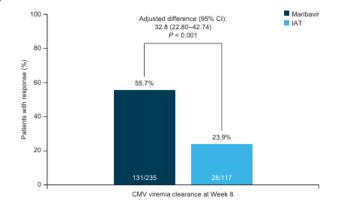
- a transplant from a HCMV seronegative donor (HR 2.30; 95% CI 1.55-3.40; p<0.001),
- a transplant from a haploidentical donor (HR 3.51; 95% CI 1.70-7.25; p<0.001),
- T cell depletion (HR 1.86; 95% CI 1.19-2.91; p=0.006),
- > 20 days duration to obtain engraftment (HR 1.51; 95% CI 1.02-2.22; p=0.038),
- grade II-IV acute GVHD (HR 1.65; 95% CI 1.08-2.51; p=0.021),
- a clinically significant EBV DNAemia (HR 1.59; 95% Cl 1.02-2.47; p=0.047)
- an invasive fungal disease (HR 2.02; 95% CI 1.05-3.89; p=0.036).

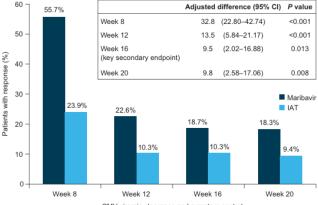
SIX Congresso della Società GITMO - RIUNIONE NAZIONALE GITMO				Clinical Infectious Diseases		
	Clinical Infectious Diseases		Clinical Infectious Diseases®	2022;75(4):690-701	MAJOR ARTICLE	
	MAJOR ARTICLE					s of Cytomegalovirus (CMV)
					Infection and Disease	in Transplant Patients Including
		ory Cytomegalovirus Infections With			Resistant and Refracto	ory CMV for Use in Clinical Trials:
		Post-Transplant: Results From a			2024 Update From the	e Transplant Associated Virus
	Phase 3 Randomized (Infections Forum	
	Nassim Kamar, [®] Deepali Kumar, [®] Johan Maertens, [®] Fran Jingyang Wu, [®] Aimee K. Sundberg, [®] and Martha Fournie	sisco M. Marty, ^{12,4} Genovefa A. Papanicolaou, ^{13,14} Fernanda P. Silveira, ¹⁵ Oliver Witzke, ¹⁶			Aimee Hodowanec, ¹⁰ Takashi Komatsu, ¹⁰ Ajit P. Limaye, ¹¹	phie Alain, ⁶ Robin Avery, ⁶ Cyrus Badshah, ⁶ Michael Boeckh, ^{7,2} Martha Fournier, ⁹ Oriol Manuel, ¹⁷ Yoichiro Natori, ¹³ David Navarro, ⁴³³ Andreas Pikis, ¹⁰ a Miller, ²⁸ Paul D. Griffiths, ¹³ and Camille N. Kotton ²² , for the CMV Definitions Working Group of
					A1 1 1 1 1 1 1 1	B: ® 0004 70/01 707 04

Infectious Diseases

Refractory CMV infection was defined as a documented failure to achieve >1 \log_{10} decrease in CMV DNA level after ≥2 weeks of ganciclovir, valganciclovir, or foscarnet treatment. Resistant CMV infection was defined as a refractory CMV infection with documentation of at least 1 genetic mutation associated with resistance to ganciclovir or foscarnet by local testing results. Clinical Infectious Diseases

MAJOR ARTICLE


Clinical Infectious Diseases®


2022;75(4):690-701

Maribavir for Refractory Cytomegalovirus Infections With or Without Resistance Post-Transplant: Results From a Phase 3 Randomized Clinical Trial

Robin K. Avary,¹ Sophie Alain,² Barbara D. Alexander,² Emily A. Blumberg,⁴ Roy F. Chemaly,² Catherine Cordonnier,⁴ Rafael F. Duarte,¹ Diana F. Florescu,¹ Nassim Kamar,² Depail Kumar,² Johan Maertens,¹ Francisco M. Marty,^{1,10} Genovela A. Papanicidanu,^{11,10} Fernanda P. Silveira,¹¹⁰ Oliver Witzke,¹⁰ Jingrang Wu, ¹¹ James K. Sundberg,¹¹ and Martha Fourier,¹¹ forth sol SUTED Trial Investigators¹

-	1011 (20) 001	copullucio			
Characteristic	Maribavir	IAT	Adj	usted difference in proportion of	responders (95% CI)
Age group					
18-44 years	28/55 (50.9)	8/32 (25.0)			26.4 (6.06-46.74
45-64 years	71/126 (56.3)	19/69 (27.5)		e	29.9 (16.18-43.6
≥65 years	32/54 (59.3)	1/16 (6.3)		-	53.9 (36.81-71.0
Sex					
Male	87/148 (58.8)	15/65 (23.1)		e	35.7 (22.76-48.5
Female	44/87 (50.6)	13/52 (25.0)		-	27.4 (11.35-43.4
Region					
North America	72/134 (53.7)	19/71 (26.8)		_	26.9 (13.75-40.1
Europe	56/97 (57.7)	8/39 (20.5)		_	42.0 (26.90-57.0
Asia	3/4 (75.0)	1/7 (14.3)			56.1 (-25.30 to 100
Transplant type					
SOT	79/142 (55.6)	18/69 (26.1)			30.5 (17.31-43.6
HCT	52/93 (55.9)	10/48 (20.8)			36.1 (20.92-51.3
IAT					
Valganciclovir/ganciclovir	NA	15/56 (26.8)		e	31.7 (18.63-44.7
Foscarnet	NA	9/47 (19.1)			36.4 (23.37-49.4
>1 IAT	NA	4/7 (57.1)			-3.2 (-40.31 to 33
Baseline CMV viral load					
Low	95/153 (62.1)	21/85 (24.7)		_ -	37.4 (25.41-49.3
Intermediate/high	36/82 (43.9)	7/32 (21.9)			21.8 (3.93-39.6
Presence of IAT resistance muta	tion				
Yes	76/121 (62.8)	14/69 (20.3)			44.1 (31.33-56.9
No	42/96 (43.8)	11/34 (32.4)	_		12.6 (~6.24 to 31.
Anti-lymphocyte globulin use					
Yes	53/100 (53.0)	12/49 (24.5)			29.9 (14.30-45.4
No	78/135 (57.8)	16/68 (23.5)			35.0 (21.94-48.0
Symptomatic CMV infection by E	AC				
Yes	10/21 (47.6)	1/8 (12.5)	_		30.6 (-7.46 to 68.
No	121/214 (56.5)	27/109 (24.8)			32.5 (22.05-43.0
			-50 -40 -30 -20 -10	0 10 20 30 40 50 60 3	0 80 90 100
			Favors IAT	Favors maribavir	
				T diferent interiodient	

CMV viremia clearance and symptom control

Clinical Infectious Diseases

Phase 3 Randomized Clinical Trial

Maribavir for Refractory Cytomegalovirus Infections With or Without Resistance Post-Transplant: Results From a

Robin K. Avery, ¹ Sophie Alain,² Barbara D. Alexander,² Emily A. Blumbery,⁴ Roy F. Chemaly,² Catherine Cardonnier,⁶ Rafael F. Duarte,¹ Diana F. Horescu,¹ Nassim Kamar,² Deepail Kumar,² Johan Maertens,¹ Francisco M. Marty,^{1,2,1} Genorela A. Papanicolaou,^{1,2,1} Fernanda P. Silveira,¹⁰ Oliver Witzke,¹¹ Jingrang Wu,¹¹ Jimme K. Sundhery,¹¹ and Martha Fourier¹¹ forth Sol SUTED Frain Investigates: A Clinical Infectious Diseases®

2022;75(4):690-701

Table 2. Treatment-Emergent Adverse Events Occurring in ≥10% of Patients in Either Treatment Group or for Individual Investigator-Assigned Therapy (Safety Population)

			b	AT Type ^a	
System Organ Class Preferred Term	Maribavir (n = 234)	IAT (n = 116)	Ganciclovir/Valganciclovir (n = 56)	Foscarnet (n = 47)	Cidofovir (n = 6
AnyTEAE	228 (97.4)	106 (91.4)	51 (91.1)	43 (91.5)	5 (83.3)
Blood and lymphatic system disorders					
Anemia	29 (12.4)	14 (12.1)	4 (7.1)	9 (19.1)	0
Leukopenia	7 (3.0)	8 (6.9)	7 (12.5)	1 (2.1)	0
Neutropenia	22 (9.4)	26 (22.4)	19 (33.9)	7 (14.9)	0
Gastrointestinal disorders					
Diarrhea	44 (18.8)	24 (20.7)	13 (23.2)	9 (19.1)	1 (16.7)
Nausea	50 (21.4)	25 (21.6)	8 (14.3)	14 (29.8)	1 (16.7)
Vomiting	33 (14.1)	19 (16.4)	7 (12.5)	8 (17.0)	2 (33.3)
General disorders and administration s	ite conditions				
Fatigue	28 (12.0)	10 (8.6)	7 (12.5)	3 (6.4)	0
Edema peripheral	17 (7.3)	9 (7.8)	3 (5.4)	5 (10.6)	0
Pyrexia	24 (10.3)	17 (14.7)	6 (10.7)	9 (19.1)	2 (33.3)
Infections and infestations					
CMV viremia ^b	24 (10.3)	6 (5.2)	4 (7.1)	1 (2.1)	0
Metabolism and nutrition disorders					
Hypokalemia	8 (3.4)	11 (9.5)	1 (1.8)	9 (19.1)	1 (16.7)
Hypomagnesemia	9 (3.8)	10 (8.6)	2 (3.6)	7 (14.9)	1 (16.7)
Hypophosphatemia	4 (1.7)	5 (4.3)	0	5 (10.6)	0
Nervous system disorders					
Dysgeusia	87 (37.2)	4 (3.4)	2 (3.6)	0	1 (16.7)
Headache	19 (8.1)	15 (12.9)	6 (10.7)	8 (17.0)	0
Paresthesia	4 (1.7)	5 (4.3)	0	5 (10.6)	0
Renal and urinary disorders					
Acute kidney injury	20 (8.5)	11 (9.5)	1 (1.8)	10 (21.3)	0
Vascular disorders					
Hypertension	9 (3.8)	8 (6.9)	1 (1.8)	6 (12.8)	0

Recommendations from the 10th European Conference on Lancet Infect Dis 2025 Infections in Leukaemia for the management of cytomegalovirus in patients after allogeneic haematopoietic cell transplantation and other T-cell-engaging therapies

Per Ljungman, Sophie Alain, Roy F Chemaly, Hermann Einsele, Federica Galaverna, Hans H Hirsch, Alicja Sadowska-Klasa, David Navarro, Jan Styczynski, Rafael de la Camara

	ESCMI) grade
	Adults	Children
Maribavir is effective for treatment of resistant or refractory CMV infection and disease and is associated with lower risk for side-effects than the other alternatives	AI	BIIt*
Maribavir is not indicated for CMV disease involving the CNS and the eyes	DIIt	DIIt
If resistance is suspected, it should be documented by genotyping	All	All
Change of therapy is recommended before having results of resistance testing available	BII	BII
Foscarnet is an alternative therapy for resistant or refractory CMV infections, in particular in the CNS and eyes, but is associated with clinically significant toxicity	BII	All
Cidofovir is an option for the treatment of CMV retinitis	BII	BII
CMV-specific T cells are an option for treatment of resistant or refractory CMV infection or disease, if available	BII	Cllu
Combination therapy for resistant or refractory CMV infections could be considered	BII	CII
The combination of maribavir with valganciclovir or ganciclovir should not be used	DIIt	CIII
Letermovir is not indicated for pre-emptive therapy of CMV infection or treatment of CMV end-organ disease including resistant or refractory infections	DIII	DIIt
MV=cytomegalovirus. ESCMID=European Society for Clinical Microbiology and Infectious Diseases. *Can be considered when the patient is older than ot approved by the European Medical Association for individuals younger than 18 years.	12 years. H	lowever, it

Table 3: Treatment of resistant or refractory CMV

ECIL 10 recommends that maribavir be considered for patients with neutropenia who cannot be treated with valganciclovir (BI) or patients with renal function impairment who foscarnet (BII) is not appropriate for.

of Maribavir Therapy for Refractory or Resistant Cytomegalovirus Infection in Transplant Recipients

Sunven Chou,^{1,2} Sophie Alain,^{3,0} Carlos Cervera,⁴ Roy F. Chemaly,⁵ Camille N. Kotton,⁶ Jens Lundgren,^{2,0} Genovefa A. Papanicolaou,^{4,3} Marcus R. Pereira,¹⁰ Jingyang J. Wu,¹¹ Rose Ann Murray,¹¹ Neil E. Buss,¹² and Martha Fournier¹¹

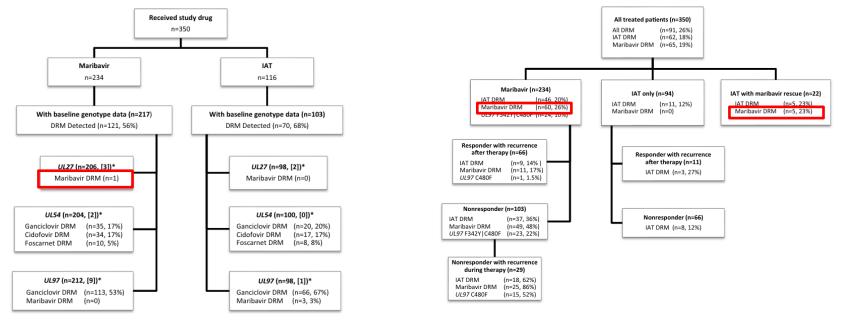


Figure 1. Baseline drug resistance mutations by assigned drug and viral gene. Asterisks indicate number of patients with genotyping in the indicated gene, and in square brackets the number of patients with incomplete data for the gene. Abbreviations: DRM, drug resistance mutation; IAT, investigator-assigned therapy.

Figure 2. Treatment-emergent drug resistance mutations by patient category. Each treatment and outcome category is listed in bold with the number of patients (n). The number and percent of each group that developed maribavir-DRMs or IAT-DRMs is listed. UL97F342Y and C480F are counted under both maribavir-DRMs and IAT-DRMs, and also listed separately if present. Abbreviations: DRM, drug resistance mutation; IAT, investigator-assigned therapy. The Journal of Infectious Diseases

The Journal of Infectious Diseases®

2025;231:e470-

Comparative Emergence of Maribavir and Ganciclovir Resistance in a Randomized Phase 3 Clinical Trial for Treatment of Cytomegalovirus Infection Sunven Cheu,¹² Drew J. Winston,³ Robin K. Avery,⁴⁰ Catherine Cordonnier,⁵ Rafael F. Duarte,⁴ Shariq Haider,⁷ Johan Maertens,⁴ Karl S. Peggs,³

Carlos Solano,¹⁰ Jo-Anne H. Young,^{11,0} Joan Gu,¹² Ginger Pocock,¹² and Genovefa A. Papanicolaou¹³

Table 1. Emergent Drug Resistance After ≥21 Days of Study Drug

Randomized Study Drug	Maribavir	Valganciclovir	P Value (Test	
Received ≥21 d, n	241	241		
Days of study drug treatment, median (range)	56 (21-62)	55 (21-63)		
Primary end point achieved, n (%)	187 (77.6)	210 (87.1)	.008ª	
Recurrence of CMV DNA while on therapy, n (%)	14 (5.8)	0	.0001ª	
Baseline plasma CMV DNA ≥9100 IU/mL, n	42	44		
Developed resistance mutation for study drug, n (%)	24 (10)	6 (2.5)	.001ª	
Days of study drug treatment, median (range)	56 (40-60)	55.5 (32-58)		
Days to detection of first DRM, median (range)	56 (35-125)	89.5 (66-110)	.007 ^b	
Recurrence of CMV DNA while on therapy, n (%)	12 (50)	0		
Baseline plasma CMV DNA ≥9100 IU/mL, n (%)	12 (50)	3 (50)		
Primary end point achieved, n (%)	4 (16.7)	4 (66.7)	.03ª	

OXFORD

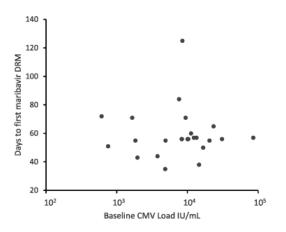


Figure 1. Baseline viral loads and interval to emergence of maribavir resistance. Each point represents the baseline CMV load and days to emergence of maribavir resistance for an individual patient. There is no correlation of the parameters (Pearson correlation coefficient –0.04). Abbreviations: CMV, cytomegalovirus; DRM, drug resistance mutation.

After 3–8 weeks of therapy, maribavir resistance emerged earlier and more frequently than ganciclovir resistance but was usually treatable using alternative therapy.